
1

U
n

it
 1

4
: E

ve
nt

 d
riv

en
 p

ro
gr

am
m

in
g

By the end of this unit you should:
1. Understand the features of event driven programming
2. Be able to use the tools and techniques of an event driven language
3. Be able to design event driven applications
4. Be able to implement event driven applications

Whether you are in school or college, passing this unit will involve being assessed. As
with most BTEC schemes, the successful completion of various assessment criteria
demonstrates your evidence of learning and the skills you have developed.

This unit has a mixture of pass, merit and distinction criteria. Generally you will find
that merit and distinction criteria require a little more thought and evaluation before
they can be completed.

The colour-coded grid below shows you the pass, merit and distinction criteria for this
unit.

To achieve a pass grade
you need to:

To achieve a merit grade
you also need to:

To achieve a distinction
grade you also need to:

P1 Explain the key
features of event

driven programs

M1 Discuss how an
operating system

can be viewed as an event
driven application

D1 Evaluate the
suitability of event

driven programs for
non-graphical applications

P2 Demonstrate the
use of event driven

tools and techniques

M2 Give reasons for the
tools and techniques

used in the production of an
event driven application

P3 Design an event
driven application to

meet defined requirements

P4 Implement a working
event driven

application to meet defined
requirements

P5 Test an event driven
application

M3 Analyse actual test
results against

expected results to identify
discrepancies

D2 Evaluate an event
driven application

P6 Create on-screen
help to assist the

users of a computer program

M4 Create technical
documentation for

the support and maintenance
of a computer program

BTEC Level 3 National in IT

2

Introduction
Event driven programming (EDP) is a 10-credit
unit that explores concepts typically introduced
in Unit 6 Software design and development.
 Programs developed using an event driven
approach differ from traditional algorithm-
oriented solutions. In EDP, the key is to
understand what kinds of events can be
triggered and how the program can best
respond to them.
 For some learners, EDP can be much more
rewarding as it allows them to build simple
applications that offer rich functionality with
minimum fuss.
 In this unit, we will explore EDP using
Microsoft’s popular Visual Basic .NET®
programming language.

How to read this chapter
This chapter is organised to match the content
of the BTEC unit it represents. The following
diagram shows the grading criteria that relate
to each learning outcome.

You’ll find colour-matching notes in each chap-
ter about completing each grading criterion.

14.1 Understand the features
of event driven programming
This section will cover the following grading
criterion:

P1

1. Understand the
features of event

driven programming

2. Be able to use the
tools and techniques

of an event driven
language

3. Be able design
event driven
applications

P4

P5

M3

M4

D2

P3

P2

P6

M2

P1

M1

D1

4. Be able to
implement event

driven applications

Figure 14.00

Make the Grade
This criterion requires you to be able to explain the
key features of event driven programs.
 This is designed to test your knowledge and
understanding of the various features that
typify EDP.
 Assessment is likely through a quiz, discussion,
leaflet, poster, report or presentation.

P1

Event driven programming

3

14.1.1 Key features
Event driven programming can contribute to both
service oriented and time driven approaches to
processing. What does this mean?

Service oriented processing is a term used to de-
scribe the concept of multiple services (processes
written in different programming languages) ad-
vertised and accessed as and when needed by an
organisation.

Time driven is the term used to describe process-
ing that occurs when tasks are regulated by a clock,
that is, actions are occurring at set intervals and
typically need a real-time response. In this case, an
event could be generated by a ‘timer’ trigger.

In addition there are a number of other terms that
are used when discussing event driven program-
ming. The most common ones are shown in the
Key terms box.

Figure 14.01 gives a visual representation of the key
EDP features.

Key terms
A form is a visual container used to group
together user interface components such as
text boxes, buttons, labels, checkboxes and
so on. It is used to provide an input mecha-
nism for a user that is both approachable
and functional.

Event loops are processing cycles that
continually look for events to happen (e.g.
a button click, file deletion or arrival of a
data packet over a network).

Trigger functions are used by event loops
to identify and launch a response to an
event that has happened in an event loop.

Event handlers are the actual program
code modules that are executed when a
particular trigger has occurred. For exam-
ple, if a user clicked a button this would
trigger an event handler for the code ac-
tions associated with the button.

Event driven programming uses all four of
these elements to form an effective software
development solution.

On Click Event Handler
XXXXXXXXXXX XXXXXXXXX XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXX

On Move Event Handler
XXXXXXXXXXX XXXXXXXXX XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXX XXXXXXXX
XXXX XXXX XXXXXX XXXXXXXXXXX

On Click Trigger On Move Trigger

Event
LoopMy Window

OK CANCEL

Figure 14.01 Event driven programming

BTEC Level 3 National in IT

4

EDP Scorecard
There are clear advantages to using EDP:
+ Flexibility.
+ Suitability for graphical user interfaces.
+ Simplicity of programming (visual

components auto generate code for
the programmer).

+ Ease of development, particularly
for Rapid Application Development
(RAD).

In the example shown in Figure 14.01, a form is
enclosed in an event loop.

Two trigger functions are specifically available:
Form Move and Button Click.

When the ‘Form Move’ trigger is detected (by the
user manually repositioning the form on screen),
the ‘On Move’ event handler is called and executed.

When the ‘Button Click’ trigger is detected in re-
sponse to the ‘OK’ button being clicked, an ‘On
Click’ event handler is called and executed.

Please note that the ‘On-Click’ event handler
could perform an action that would trigger anoth-
er event to occur. This is called an event cascade;
in theory a number of events could be cascaded in
an event driven solution.

14.1.2 Examples
This section will cover the following grading
criteria:

M1 D1

An operating system is a good example of an event
driven system as its graphical user interface (GUI)
has to accommodate users freely interacting with
many different on-screen components in any order.

In addition, the aspect of the operating system
that controls and reports on hardware usage and
problems also reacts to system events in order to
inform the user.

Some typical operating system occurrences that
show examples of EDP include:

Make the Grade
M1 requires you to be able to discuss how an
operating system can be seen as an event driven
program.
 This is designed to test your knowledge and
understanding of the various features that typify EDP
and be able to equate those to the GUI functionality
that is present in modern operating systems.
 Assessment is likely through a quiz, discussion,
leaflet, poster, report, presentation or screencast.
 D1 requires you to be able to evaluate the
suitability of event driven programs for non-
graphical applications.
 In terms of non-graphical user interfaces, a
typical command line interface (see Unit 2) normally
processes just keyboard input. The scope for varied
input mechanisms is therefore very limited.
 An EDP application could be written to process
system events, programmed to listen for certain
events, for example, a system error occurring,
informing the user or running a specific utility to fix
the problem automatically.

D1M1

Event driven programming

5

1. Events generated by the user via the GUI, such as
MM clicking an icon
MM moving an icon
MM dragging a window
MM resizing a window
MM dragging and dropping a selected item
MM clicking on a menu item
MM minimising or maximising a window.

2. Events generated by the operating system. For a
specific example, let us use a Microsoft Windows®
calculator applet, which has a surprising
number of potential triggers (Figure 14.02).

This applet has to deal with triggers for button
clicks, key presses, menu selection, radio buttons,
check boxes, minimising and window movement –
and that’s before the functional part (i.e. doing the
actual calculations) is considered.

As you can see, any simple program that awaits un-
predictable user input has to be ready to handle
any event, depending on the trigger.

14.1.3 Programming languages
There are a number of programming languages
which adopt the event driven paradigm.

The most common ones are detailed below.

Microsoft Visual Basic®

Visual Basic®, often abbreviated by developers to
just ‘VB’, is an event driven programming language
that was created by Microsoft and released in 1991.

The language itself is heavily derived from BASIC
(Beginner’s All-purpose Symbolic Instruction Code)

and shares many of its keywords and constructs. In
addition, Visual Basic® provides opportunities for
RAD applications, which often rely on a graphical
user interface (GUI).

It also has simple integration with Microsoft Access®
and Excel® and provides relatively straightforward
use of Window libraries (in the form of .DLL files
and ActiveX® controls) to tap into pre-written rou-
tines such as the Common Dialog Box for Open/
Save/Font/Colour components.

Visual Basic® programs are only intended to run on
a Microsoft Windows® operating system. The Visual
Basic® language and Integrated Development
Environment (IDE) have the same limitation.

Visual Basic® is slowly being replaced by its suc-
cessor (Visual Basic.NET®) although, as there is a
wealth of legacy, Visual Basic® code is still in use
today and is unlikely to disappear that soon.

The last version of traditional Visual Basic® is VB6
(Figure 14.03).

Its successor is Microsoft Visual Basic.NET®.

Microsoft Visual Basic.NET®

Visual Basic.NET® is effectively Microsoft’s version
7 of Visual Basic®. However, more than being a
simple update, VB.NET® is a true object oriented
version of the language, built on Microsoft’s.NET
framework. As a consequence, the language syntax
and features available in Visual Basic® no longer
worked as they once did, causing developers much
pain during their initial period of transition.

The newest version is part of Microsoft Visual
Studio® 2010 Professional (Figure 14.04).

Figure 14.02 Microsoft Windows® calculator applet

BTEC Level 3 National in IT

6

VBA
VBA (Visual Basic for Applications) is a dialect
of Microsoft’s Visual Basic® that is built into
Microsoft Office® applications such as Microsoft
Word® and Microsoft Excel®.

VBA gives developers a way to add functionality to
Microsoft applications and to customise them to
form tailored solutions. In addition, VBA also al-
lows developers to automate these packages using
macros which represent a quick, low-cost, low-risk
approach to designing bespoke solutions.

Figure 14.03 Visual Basic® 6 IDE

Figure 14.04 Visual Basic.NET® IDE

Activity 1

Downloading Visual Basic.Net® 2010
Express Edition

Following the provided link, download,
install and register the free version
of Microsoft’s Visual Basic.Net® 2010
Express Edition.

Visual Basic.NET® Express edition can
be freely downloaded from:

www.microsoft.com/expressDownloads/
#2010-Visual-Basic

Event driven programming

7

This example, accessed from a toolbar button
click event, highlights the selected text in yellow .

VBA has a poor reputation for security; many macro
viruses have been successfully written which infect
Microsoft Office® documents, often causing an-
noying side effects and disabling an application’s
key features. As a result, security features have been
added to these applications to screen malicious
(‘unsafe’) VBA code.

VBA has been superseded by Microsoft Visual
Studio® 2005 Tools for Applications, a .NET
implementation.

Adobe ColdFusion® (CF)
ColdFusion® is a RAD environment, running on
multiple operating system platforms, that can cre-
ate rich internet applications that often contain a
large amount of event driven components.

ColdFusion® uses its own proprietary scripting lan-
guage (ColdFusion® Markup Language or ‘CFML’)
to create interactive and dynamic web pages in a
similar way to PHP and ASP .Net®. This requires
the use of a ColdFusion® Application Server,
which processes the script before sending it to the
receiving web browser client for rendering.

ColdFusion®’s ability to expand on traditional
HTML limitations enhanced its ability to create
web pages with a number of interactive and event
driven elements.

14.2 Be able to use the tools
and techniques of an event
driven language
This section will cover the following grading
criteria:

P2 M2

Sub Test()
' Test Macro
' Macro recorded 01/03/2010 by Mark
' Options.DefaultHighlightColorIndex = wdYellow
 Selection.Range.HighlightColorIndex = wdYellow
End Sub

Activity 2

Starting with Adobe® ColdFusion®

Following the provided link, download, install and try the trial version of Adobe®’s
ColdFusion® 9.

www.adobe.com/eeurope/products/coldfusion/

In addition, the following websites have good CF tutorials, live demonstrations and
code downloads:

LearnCF learncf.com/home

EasyCFM www.easycfm.com/

Key terms
An API or Application Programming
Interface forms the library or interface that
gives an application access to common op-
erating system functions.

DirectX is a form of API designed by
Microsoft that is used specifically in the
creation of Windows®-based multimedia ap-
plications. It includes support for 2D and
3D graphics, network communication, input
devices, music and sound.

BTEC Level 3 National in IT

8

14.2.1 Triggers
Common triggers are typically either: a user event
or a system event.

It is important that you can use an event driven
programming language to respond to such event
triggers. The following Visual Basic® .NET example

in Figure 14.05 demonstrates handling both user
events (key presses, mouse click etc.) and system
generated events.

This simple example is created by selecting a ‘Button
Control’ (actually a .NET component) from the VB
.NET® Toolbox. This is then drawn on the form.

The Button Control’s Text property is changed to
‘What time is it?’

The Button is then double-clicked to display the
VB .NET® code window.

It is here that an empty ‘stub’ event handler is
shown. As a software developer, you need to add
the appropriate actions to this event handler.

In this case we will use a VB .NET® function called
‘MsgBox’ which displays customised Message
Boxes on the Windows® screen (Figure 14.06). In
addition, we’ll use the ‘Now’ function which re-
turns the current date and time (as stored in the
PC’s RTC – real time clock).

In the nice, simple example in Figure 14.07, the VB
.NET® application simply executes the ‘Button_
Click’ event handler when the user triggers the
event by clicking on the ‘What time is it?’ button
with the mouse.

Make the Grade
P2 asks you to be able to demonstrate event driven
tools and techniques; these are listed throughout
sections 14.2.1, 14.2.2 and 14.2.3. Any event driven
solution you design and implement for P3 and P4 is
likely to provide evidence for your selection of these
tools and techniques, for example, your choice of
variables, use of selections and loops, the controls
used on your forms.
 For M2, however, you need to explain why you
used certain tools in your solution, for example, why
use a drop-box rather than a textbox? Why use radio
buttons rather than a checkbox? Why is the menu
system designed like that?

M2P2

Figure 14.05 Creating a simple user event in VB.NET®

Figure 14.06 Coding the event handler in VB.NET®

Event driven programming

9

The ‘Button_Click’ event handler responds to the
trigger by displaying a message box that shows the
current date and time; displaying the ‘OK’ button
is the default behaviour for a message box.

As you can see, coding a basic event handler is a
fairly straightforward practice in VB.NET®. Don’t
worry, though, the examples will get more chal-
lenging as we work through.

System events are a bit trickier!

First we need to select a suitable system event.

System events are directly connected to the op-
erating system on a computer system. As a result,
any demonstration created using VB.NET® will be
using Microsoft Windows®.

Common Windows® system events include triggers
for:

MM low RAM
MM change of display settings (the video mode)
MM change of power mode (e.g. moving to and from

suspend mode)
MM change of RTC settings (date and time).

Step 1
Create a new project, adding the two labelled but-
tons (Button1 and Button2) and a label (Label1)
shown in Figure 14.08.

Figure 14.07 Running the VB.NET® application and
triggering the user event

Activity 3

Modifying the code

VB.NET® programs are modified by
altering the form contents and its
associated event handlers.

Try to modify the Button so that the
Text property says ‘Play Windows Alert!’

Delete the Msgbox line of code and
replace with the following:

My.Computer.Audio.
PlaySystemSound(System.Media.
SystemSounds.Asterisk)

Now re-run the VB.NET® program and
test the new user event.

Hopefully, if you have modified the code
correctly, your PC should make your
Windows® Alert sound when the mouse’s
‘Button_Click’ event is triggered.

Caution!
Because of the complexity of the following
example, the process has been broken down into
a number of steps.
If you follow each step carefully, everything should
work. If you discover a problem, go back a step
(or two) and see whether you’ve missed anything.

Figure 14.08 Creating the form for system events

BTEC Level 3 National in IT

10

Step 2
Double click on Button1 and add the following
VB.NET® code:

Step 3
Double click on Button2 and add the following
VB.NET® code:

This will have added code to both buttons’ event
handlers to add a system event handler (when
Button1 is triggered) and remove the system event
handler (when Button2 is triggered).

The handler is for the TimeChanged system event.
VB.NET® will need to know what we want to do
when the system event is triggered (i.e. when the
user changes the RTC). To do this we simply give
the RAM address of a new event handler we are go-
ing to write (we’ve called this ‘MyEventHandler’).

Creating the new event handler comes next.

Step 4
Right click on ‘WindowsApplication1’ in VB.NET®’s
Solution Explorer panel (Figure 14.09).

VB.NET® uses modules as separate .vb files which
can store our functions. This new module is
where we will put our new program code for the
TimeChanged system event handler (i.e. saying
what will happen).

Step 5
Select ‘Module’ which opens up the ‘Add New Item’
window (Figure 14.10).

Choose ‘Module’ and ensure that the module is
called ‘Module1.vb’ (it should be).

Step 6
Double click the new ‘Module1.vb’ entry in the
Solution Explorer.

Then add the following VB.NET® code into the
empty module:

AddHandler SystemEvents.
TimeChanged, AddressOf
MyEventHandler

RemoveHandler SystemEvents.
TimeChanged, AddressOf
MyEventHandler Label1.Text = ""

Figure 14.09 Adding a new module to the current
application

Figure 14.10 Adding a new module to the current
application

Figure 14.11 Opening the new module

Event driven programming

11

Step 7
Double click ‘Form1.vb’ in the Solution Explorer.

Then, double click the form itself to create the
empty ‘Form1_Load’ event handler.

Add this code to it:

Step 8
Move the cursor into the ‘General’ section of the
VB.NET® code window.

Add the following line:

Step 9
That should be it!

Let’s recap those steps by first looking at the form’s
(‘Form1.vb’) code (Figure 14.12).

Step 10
And then the same, but for the module (‘Module1.
vb’).

Step 11
Save all the files (CTRL+SHIFT+S)!

Step 12
It should now be possible to run the application
to test our handling of Windows®’ ‘TimeChanged’
trigger.

Step 13
Enable our system event handler by clicking the
‘Add System Event Handler’ button once (Figure
14.14).

Public Sub MyEventHandler(ByVal
sender As Object, ByVal e As
EventArgs)
 Form1.Label1.Text = "User has
changed the system time"
End Sub

Label1.Text = ""

Imports Microsoft.Win32

Figure 14.12 VB .NET® code related to the form

Figure 14.13 VB .NET® code related to the module

Figure 14.14 The form as it first appears

BTEC Level 3 National in IT

12

Step 14
Change your PC’s system time (Figure 14.15).

Step 15
Re-examine our form (Figure 14.16).

As you can hopefully see, our homemade system
event handler has been triggered by the operat-
ing system. This is shown by the change of the
label’s text (beneath the buttons). Compare this
to Figure 14.14.

Step 16
Click on ‘Remove System Event Handler’ and
change the time back.

Although the ‘TimeChanged’ trigger will still occur,
our system event handler has been removed. As a
result, there will be nothing to deal with it.

Figure 14.15 Changing the time in Windows®’ ‘Date
and Time’ applet

Figure 14.16 The application has changed appearance

Activity 4

Modifying the code

Attempt to modify the example
application by writing a simple event
handler for the ‘change of display
settings’ trigger.

This is known as
‘DisplaySettingsChanged’.

As you may have guessed, the
‘Imports Microsoft.Win32’ is used to
give the developer access to the system
events listed in the Win32 API.

Your homemade event handler can
simply display a message that says
‘Display settings have been changed’.

If you feel really confident, add a
Windows® alert sound.

1. Name three different event driven program-
ming languages.

2. Common triggers can be caused by the ______
or the ________? Complete this sentence.

3. Name three possible system events.
4. Give three advantages of event driven

programming languages.
5. Give three disadvantages of event driven

programming languages.
How well did you do? See the answers section!

Braincheck 1B

Event driven programming

13

14.2.2 Tools and techniques
An event driven programming language such as
VB.NET® has a number of different elements. In
this section we’ll take a closer look at these ele-
ments and look at putting them together to form
more complex solutions.

Use of toolbox and controls
Controls are the basic elements of a VB.NET®
application.

Most of the common controls can be found in
the Toolbox, a categorised collection of visual
elements that can be added to a standard form
(Figure 14.17). It is accessed by pressing the but-
ton to the left of the form design view.

The Common Controls represent the category that
most developers will initially rely on to build their
solutions as they form the core of most graphical
user interfaces. It is also the category that we will
focus on in this book.

When a control is added to a form, it allows the de-
veloper to add event handler code to specific triggers
and change the control’s properties (Figure 14.18).

In this regard it is similar to an object, having both
properties and methods.

The control’s properties can be seen in VB.NET®’s
Properties Window (Figure 14.19).

VB.NET® controls can therefore be seen as class-
es, with the actual instances of the controls (sat
on the form) as the true objects.

This is a logical view as changing the properties of
one TextBox ‘object’ does not change the proper-
ties of another (much as in OOP).

Figure 14.17 VB.NET® Toolbox with Common
Controls expanded

Figure 14.18 VB.NET® TextBox control

Unit link
Unit 6 – Software design and
development section 6.2.2 introduces
object oriented programming concepts.

Figure 14.19 VB.NET® TextBox control’s properties
(alphabetical)

Clicking the Auto
Hide icon will
toggle (stop) the
toolbox between
automatically hiding
when not in use and
being permanently
pinned to the left
hand side of the
screen.

BTEC Level 3 National in IT

14

As you have seen already, (most but not all) proper-
ties can either be changed at design time or at run
time (through the VB.NET® program code itself).

For example, we can use the Properties Window and
alter the correct property manually (Figure 14.20).

But we can also achieve the same effect via
VB.NET® code, executed at run time:

VB has a number of pre-defined colours in its
Color structure; ‘Cyan’ is just one of them.

A more complex method would be…

The latter example uses the FromArgb function
(or method) to generate a colour based on its red,

green and blue values. If you look back at Figure
14.20, you’ll see that these are the same RGB val-
ues as selected in the Properties Window.

Event handlers
VB.NET® has a number of event handlers, some are
generic (‘Click’ being fairly common) but others
are specific to certain controls.

Here is a list of some event handlers for the Button
control:

MM Click occurs when user triggers by clicking
the button.

MM DoubleClick occurs when user triggers by
double-clicking the button.

MM KeyDown occurs when button has focus (it’s
selected) and a key is pressed.

MM MouseHover occurs when user hovers mouse
over the button.

And some different event handlers for a TextBox
control:

MM Enter Occurs when user triggers by moving
into the TextBox.

MM TextChanged Occurs when user triggers by
altering the text inside the TextBox.

MM Leave Occurs when user triggers by moving
away from the TextBox (i.e. clicks or tabs to an-
other control).

The full list of event handlers available for a con-
trol can be found in VB.NET®’s help system.

Selection
A selection is a type of conditional statement,
allowing the developer to make a choice about
which lines of code to execute.

VB.NET® has a number of selection mechanisms
but perhaps the most frequently used are ‘If…
then…else’ and ‘Select…Case’ statements.

Let’s take a look at the ‘If...then…else’ statement
first.

Figure 14.20 Changing the TextBox object’s
BackColor property to cyan at design time

TextBox1.BackColor = Color.Cyan

TextBox1.BackColor = System.
Drawing.Color.FromArgb(128, 255,
255)

Event driven programming

15

If…then…else
Here is a practical example of using an ‘If…then…
else’ statement.

In this example a sample form (as shown in Figure
14.21) has two TextBoxes.

The first TextBox control (TextBox1) will allow
the user to store a date in the format dd/mm/yy,
for example, 04/09/07 would be entered for 4
September 2007.

The second TextBox control (TextBox2) will allow
the user to store a time.

If an invalid date is entered (tested using the IsDate
function in VB.NET®), the first part of the ‘If…
then….else’ statement displays a message box and
the user is returned to the Date TextBox (TextBox1)
for another try (Figure 14.22).

The test for a valid date is performed when the
user moves away from the Date TextBox, that is,
when they click on the Time TextBox. This is per-
formed by the ‘Leave’ event handler.

However, if a valid date is entered, the ‘else’ part
of the ‘If…then…else’ is executed. All this does is
to simply pop up another message box, but this
time it displays a confirmation that the date was
acceptable.

Select…Case statement
Case statements are often used to simplify program
code when it is necessary to match a single value
(or range of values) from a list of given possibilities.

Here is a practical example of the ‘Select…Case’
statement at work.

Figure 14.21 The sample form

Figure 14.22 Getting the input wrong – an example
of data validation

Figure 14.23 Getting the input right

Private Sub TextBox1_Leave(ByVal sender As Object, ByVal e As System.
EventArgs) Handles TextBox1.Leave

 If Not IsDate(TextBox1.Text) Then
 MsgBox("Please enter date (dd/mm/yy)", MsgBoxStyle.Information)
 TextBox1.Focus()
 Else
 MsgBox("Date acceptable", MsgBoxStyle.Information)
 End If
End Sub

BTEC Level 3 National in IT

16

First we create a simple form with Label, TextBox
and Button controls:

We then add the following code to the Click event
of the ‘What’s my discount?’ button control:

If you examine this closely, you will see that the text
value entered into the ‘Quantity Required’ TextBox
is converted to a number (with the VB.NET® Val
function). This is then checked by the ‘Select…
Case’ statement against a list of possible values
(and ranges).

Note that the case statements may check a single
value, a range (e.g. ‘2 To 5’) or a comma separated
list. The else part of the ‘Select…Case’ statement is
used to process any other value that isn’t matched
by any previous case statement.

Let’s test this code with some sample input values
that a customer might enter.

Entering a quantity of 1:

Lee Office Supplies is currently running a pro-
motional offer on buying multiple packs of A4
laser printer paper.

Customers who buy two to five packs of 500
sheets will get a 10 per cent discount.

Customers who buy six to eight packs of 500
sheets will get a 20 per cent discount.

No customer may order more than eight packs
at any one time.

Case Study

Figure 14.24 Lee Office Supplies’ quantity check

Select Case (Val(TextBox1.Text))
 Case 1
 MsgBox("Sorry, no discount!", MsgBoxStyle.Information)

 Case 2 To 5
 MsgBox("10% discount.", MsgBoxStyle.Information)

 Case 6, 7, 8
 MsgBox("20% discount.", MsgBoxStyle.Exclamation)

 Case Else
 MsgBox("Sorry, you can’t order more than 8.", MsgBoxStyle.Critical)
 TextBox1.Focus()

End Select

Figure 14.25 No discount awarded

Event driven programming

17

Entering a quantity of 3:

Entering a quantity of 7:

And finally, entering a quantity of 10:

In most EDP languages, similar types of selections
exist; they are fundamental building blocks that let
the developer make choices in their programs.

Loops
Loops or iterations allow the developer to perform
a group of actions repeatedly. Unless the loop is
infinite (goes on endlessly), it will have some kind
of conditional statement that will force it to stop.

VB.NET® has a number of different loops. One
of the most commonly used is the ‘For…Next’
statement.

The ‘For…Next’ statement is a common tool in
most programming languages; VB.NET® is no ex-
ception to this rule. It is used to run a loop a preset
number of times, usually controlled by a counter.

Figure 14.29 demonstrates the use of a ‘For…Next’
loop to generate a child’s times table based on two
inputs (the table number itself and the number of
rows required).

TextBox3 will be treated slightly differently. Modify
the following properties:

Multiline set to True

ScrollBars set to Both

Next, add the following code to the click event of
the ‘Make Table!’ button control:

Figure 14.26 10% discount awarded

Figure 14.27 20% discount awarded

Figure 14.28 Invalid quantity requested

Unit link
In Unit 6 – Software design and development, section 6.1.4 also examines selections (or
conditional statements) but does so from a C#® perspective. You’ll notice that although
the C#® syntax is different, ‘If’ and ‘Case’ statements are similarly constructed in
different languages.

Label 2
Label 1

Button 1

TextBox 3

TextBox 1

TextBox 2Label 3

Figure 14.29 Form design for a child’s times tables

BTEC Level 3 National in IT

18

Next, run the application and some sample values:

In this example we’ve asked for ten rows of the four
times table.

If you take a look back at the code, you will see that
the ‘For…Next’ loop is instructed to run from 0 up
to the value entered into TextBox2 (the number of
rows). If we enter ‘10’ into that TextBox, the ‘For’
loop will indeed run from 0 to 10 (rows 8, 9 and 10
need to be scrolled down to in Figure 14.30).

Inside the ‘For…Next’ loop a new string (see sec-
tion 14.2.3) is created which is used to assemble a
line of output that includes the counter, ‘X’ and ‘=’
symbols, the table number and the calculated re-
sult (which is also stored in a new variable (again,
see section 14.2.3 for details). This is then ap-
pended into the multiline TextBox3.

It is because of the fixed-length nature of the
‘For…Next’ loop that it is often used to repeat
code where the developer knows how many times
it is to be repeated before it starts.

The second type of loop we will look at is the Do…
loop.

In VB.NET® the ‘Do…’ loop can either be pre- or
post-check conditioned. What this means is that
the controlling condition is put either before (pre-
check) or after (post-check) the lines of code being

repeated. The following example (a vowel counter)
is written twice, using two forms of the ‘Do…’ loop.

First, create the form as indicated:

Again, in preparation the following properties
must be set on the TextBox1 control:

Multiline set to True

ScrollBars set to Both

Dim counter As Byte
Dim newline As String
TextBox3.Text = TextBox1.Text & " times table" & vbCrLf
For counter = 0 To Val(TextBox2.Text)
 newline = counter & " X " & TextBox1.Text & " = " & _
 Val(TextBox1.Text) * counter & vbCrLf
 TextBox3.AppendText(newline)
Next counter

Figure 14.30 The four times table

Label 2

Label 1

TextBox 1

TextBox 2

TextBox 3

TextBox 4

TextBox 5

TextBox 6

Label 3

Label 4

Label 5

Label 6

Figure 14.30 The vowel counter form design

Unit link
Unit 6 – Software design and
development, section 6.1.4 also
examines loops but does so from a
C#® perspective. You’ll notice that
although the C#® syntax is different,
loops tend to be similarly constructed in
different languages.

Pre-check condition

Event driven programming

19

The code above is added to the TextChanged event
handler of TextBox1:

When this application runs, the event handler is
triggered when a new keystroke is made. The appli-
cation then runs a post-check conditioned ‘Do…’
loop, which repeats until the counter is great-
er than the length of the current text stored in
TextBox1. Inside the loop, a ‘Select…Case’ is used
to examine each character (by using the MID
function) and increment the appropriate counter
when a vowel is matched (Figure 14.32).

Figure 14.32 The vowel counter application running

Dim counter As Byte
Dim nextchar As Char
Dim acount As Byte
Dim ecount As Byte
Dim icount As Byte
Dim ocount As Byte
Dim ucount As Byte
counter = 1
Do
 nextchar = Mid(TextBox1.Text, counter, 1)
 Select Case (nextchar)
 Case "a", "A"
 acount = acount + 1
 TextBox2.Text = acount
 Case "e", "E"
 ecount = ecount + 1
 TextBox3.Text = ecount
 Case "i", "I"
 icount = icount + 1
 TextBox4.Text = icount
 Case "o", "O"
 ocount = ocount + 1
 TextBox5.Text = ocount
 Case "u", "U"
 ucount = ucount + 1
 TextBox6.Text = ucount
 End Select
 counter = counter + 1
Loop Until counter > TextBox1.TextLength

Post-check condition

BTEC Level 3 National in IT

20

The same code can be re-written as:

In this example, a pre-check condition ‘Do…’ loop
is used, moving the condition to the beginning of
the loop. Also notice that the condition statement
has changed to ‘while counter <=’ to reflect the
fact that it is working somewhat differently. Now,
the loop will only work while the counter is still less
than or equal to the length of the text in TextBox1.

In VB.NET® it is possible to use the ‘Until’ and
‘While’ forms in both pre- and post-check forms.

The final VB.NET® loop type is the ‘While…End
While’.

This works in a similar fashion to the pre-check
‘Do...’ loop as shown above, so we won’t dwell too
much on it here!

Its VB.NET® syntax is:

Menu
Perhaps one of the most important aspects of any
EDP application is its ability to respond to triggers
generated by menu systems. Drop-down menus are
a popular component of modern software applica-
tions, so you have to be able to create them and
program their event handlers.

Step 1
Have a good idea of the menu functions you re-
quire and how you want the menu organised. This
can be achieved by drawing up a quick plan of the
options and how they are grouped.

For example:

File Edit View Help

Open
file

Copy Orders Help about this
program

Save file Paste Sales About this program

Exit

Where possible, and to improve Human Computer
Interaction (HCI), it is advisable to try to keep
menu options similar to those seen in other com-
mercial programs (or even the operating system’s
GUI). This gives the user an instant familiarity with
your software and makes it more approachable
and user-friendly.

Step 2
The VB.NET® approach to creating menus is dif-
ferent from that of its predecessor (VB6®).

Dim counter As Byte
Dim nextchar As Char
Dim acount As Byte
Dim ecount As Byte
Dim icount As Byte
Dim ocount As Byte
Dim ucount As Byte
counter = 1
Do While counter <= TextBox1.
TextLength
 nextchar = Mid(TextBox1.Text,
counter, 1)
 Select Case (nextchar)
 Case "a", "A"
 acount = acount + 1
 TextBox2.Text = acount
 Case "e", "E"
 ecount = ecount + 1
 TextBox3.Text = ecount
 Case "i", "I"
 icount = icount + 1
 TextBox4.Text = icount
 Case "o", "O"
 ocount = ocount + 1
 TextBox5.Text = ocount
 Case "u", “U”
 ucount = ucount + 1
 TextBox6.Text = ucount
 End Select
 counter = counter + 1
Loop

Dim counter As Byte
counter = 0
While counter < 10
 counter = counter + 1
 MsgBox("Loop has run " &
counter & " time(s)!")

End While

Pre-check condition

Event driven programming

21

In VB.NET® a new category of controls is present
in the ToolBox: Menus & Toolbars:

The control we want to use is the MenuStrip.
Select this and draw it on your empty form.

Don’t worry about where you draw it; it will au-
tomatically default to the top of the form. This is
shown in Figure 14.34.

Step 3
You can now start to add in the text labels (as
planned in Step 1) that represent your menu op-
tions. Click each ‘Type Here’ box and enter the ap-
propriate label (moving down or across):

Step 4
When you have finished, you should have a
MenuStrip that looks like the plan from Step 1:

Any unwanted menu items can be selected and re-
moved with the Delete key.

Step 5
Running the EDP application will result in a par-
tially working menu system; it will appear and you
will be able to navigate through the options but it
will not respond to any triggers as we have not yet
coded any event handlers.

The next step is therefore to add an event handler.

Step 6
In design mode, double click the ‘Open File’
menu option and add the following code to the
‘OpenFileToolStripMenuItem’ click event handler:

This will simply pop up a message box until we are
ready to code the full actions of this menu option.
It will, however, let us check to see that our menu
is working when the program is run.

Figure 14.33 VB.NET® ToolBox category Menus &
Toolbars

Figure 14.34 VB.NET® form with empty MenuStrip

Figure 14.35 Adding the MenuStrip labels

Figure 14.36 Completed MenuStrip

Figure 14.37 Menu in action

MsgBox("This would open a new
file", MsgBoxStyle.Information)

BTEC Level 3 National in IT

22

From here, you can simply repeat Step 6 for each
menu option and add program code appropriate
to each event handler.

Making improvements to the menu
VB.NET® allows us to make functional improve-
ments to our menu system.

What follows is a basic overview of three possible
improvements to the existing menu that you could
consider.

1. Use of shortcut keys
Shortcut keys can be used to access menu systems
without relying on the mouse. For users who re-
member keyboard shortcuts this can be a useful
time saver.

It is recommended that you select shortcuts
commonly used in commercial software so that
you keep your application consistent.

For example, ‘File open’ is usually given the key-
board shortcut CTRL + O.

This would mean the user holding down the CTRL
(Control) key and pressing the ‘O’ key.

To add this, select the required menu label in the
design view and modify the appropriate properties
of this menu option in the Properties Window as
shown in Figure 14.38.

When the application is run again, the menu op-
tion can now be accessed using the CTRL + O
shortcut key.

2. Using a separator
As the name suggests, a separator is a horizontal
line that is used to distinguish different parts of a
menu system.

A common usage is to separate loading, saving,
printing and exit options underneath the File
menu option.

We can add a separator to our File menu option by
selecting the Exit option and choosing the ‘Insert
a separator’ option from the right-click context
menu as shown in Figure 14.39.

When the application is run again, the separator is
clearly visible (Figure 14.40).

Figure 14.38 Adding a shortcut

Figure 14.39 Adding a separator

Figure 14.40 Separator between ‘Save File’ and ‘Exit’
options

Event driven programming

23

3. Adding a single letter key press for each
menu item
You may have seen a Microsoft Windows® applica-
tion where menu items have certain letters under-
lined. For example, in Microsoft Word®:

This is achieved by use of the ampersand sym-
bol (&) in the menu item’s Text property. Simply
place the ampersand before the letter you wish to
use as a key press alternative for the menu item
(Figure 14.42).

Many other options for enhancing (including
ToolTips – see 14.4.3) exist in VB.NET®.

It is recommended that you experiment with the
settings and facilities available in order to create
intuitive and functional menu systems for your
own EDP applications.

Figure 14.41 Single-letter keyboard shortcuts

Figure 14.42 Adding single-letter keyboard shortcuts

Activity 5

Creating a menu system

Use VB.NET®’s MenuStrip control to
create the following menu system:

File Reports Help

Open CTRL + O Customers About this
program

Save CTRL + S Orders

________________ Sales

Exit

Remember to create shortcuts,
separators and key press options as
indicated!

BTEC Level 3 National in IT

24

Online help
This section will cover the following grading
criterion:

P6

Online help can be incorporated into an EDP ap-
plication in a number of different ways, including:

MM colour-coded forms
MM logical layout of form elements to aid user

navigation with suitable labels and grouping of
related inputs

MM use of tab key indexing on form elements to
assist user navigation

MM menu system with single-letter keyboard short-
cuts (as demonstrated)

MM a separate help option in the menu system
MM use of tooltips (see section 14.4.3)
MM validation of input with pop-up message boxes

(see section 14.4.2)
MM launch a web browser to display a pre-written

HTML ‘help’ web page (see below).

Creating web-based online help
1. Create a sample web page that contains help

text and images for your application. You can
either code this by using Microsoft Notepad®
or use a recognised web design tool, for exam-
ple, Adobe Dreamweaver®.

2. Create a new windows application in Visual
Basic.NET®.

3. On Form1, add a new MenuStrip with a Help ->
View Help option (typically on far right).

4. Add a new Windows Form to the Project.
5. Select the new Form (Form2), rename it to ‘Help’

(text property).
6. Using the toolbox, add a WebBrowser common

control to Form2.
7. Edit the WebBrowser control’s URL property to

the name of your web page.
Note: You must include the file’s full pathname,
e.g. C:\Users\you\Desktop\help.html.

8. Select Form1, double-click the Help -> View
Help option, then add the following code:

9. Run the application. You should find that click-
ing on the menu option will open a second form
which, acting as a web browser, will display your
customised help web page!

Debugging tools
Like most programming languages with an IDE
(Integrated Development Environment), VB.NET®
has extensive debugging tools.

Perhaps the most common debugging tools are:

MM breakpoint
MM step into (similar to a Trace)
MM watch
MM immediate Window.

Make the Grade
For this criterion you have to create online help to
assist the users of your EDP applications.
 This should be easy to evidence either through
screen captures of the application or writing the user
documentation (see section 14.4.7).
 The definition of ‘online help’ is quite varied. The
list on this page gives you ideas of some possible
elements you could include and demonstrates how
to build a simple web-based solution.

P6

Form2.Show()

Unit link
Unit 6 – Software design and
development, section 6.2.1 also
examines debugging tools but does so
from a C#® perspective. You’ll notice
that debugging tools tend to function
similarly from language to language.
Therefore to avoid unnecessary
duplication, the tool definitions are
not repeated here and instead the
focus is on how these tools are used in
VB.NET®.

Event driven programming

25

Figure 14.43 A breakpoint is marked on a specific line of code

Let’s examine each of these in turn:

Breakpoint
Breakpoints can be placed into a VB.NET® pro-
gram by either clicking in the left-hand margin
(alongside the code window), by using the Debug
menu or by pressing the F9 key which toggles the
breakpoint on and off.

A breakpoint is signified by a red ball and inverse
colouring of the line of code (see Figure 14.43).

When the EDP application is run, it will temporar-
ily halt at the breakpoint, so:

The developer can then decide how to proceed; this
might mean examining variables (see section 14.2.3)
or tracing the remainder of the code line-by-line.

Step Into
Step Into is activated either by using the Debug
menu or by pressing the F8 key, which will let the
developer trace the execution of each line of code
separately.

Another feature called Step Over (Shift+F8 key or
the Debug Menu) can be used in a similar fashion

but it executes all the statements in a block of code
at once; this is useful if you are moving between
sections of the program that need to be traced line
by line (Step Into) and sections which you are con-
fident are OK (Step Over).

Step Out can be used to move from Step Into to
Step Over functionality.

Watch
A Watch may be added to a variable (see 14.2.3) in
a number of ways.

The most straightforward way to add a Watch is
to debug the program (F5), pause the execution
(Break All toolbar button) and right-click on the
variable you wish to watch. This will display a
shortcut menu which has an option ‘Add Watch’.

Adding a Watch will result in the chosen variable
appearing in a separate Watch window.

Once the program is paused it can be traced us-
ing F8 (Step Into). This allows the developer to
see the values in the Watch window changing as
the variables are processed by each active line of
program code. See Figure 14.45.

Right-clicking on the variable’s name in the Watch
window will display a further shortcut menu. One
of the options is to delete the Watch, allowing the
developer to manage active Watches effectively.

Immediate Window
This is a separate window which can be used to
output debugging information whilst the VB.NET®
application is running. If it disappears, it can be
made visible again with CTRL+G.

Figure 14.44 An active breakpoint on a line of code

Figure 14.45 Debug window showing contents of variables being processed

BTEC Level 3 National in IT

26

Usually located at the bottom left of the design
screen, it can be made to float as required or add-
ed as a tab (alongside the Form Design and Code
windows).

A simple use of the Immediate Window is to output
calculated values as the application runs, without
affecting the appearance of the form as shown in
Figure 14.46.

This can be achieved using Debug.Print like so:

In this example, the Mod (Modulus) operator is
used to discover whether or not a number is ex-
actly divisible by four (it will have a 0 remainder if
this is the case).

The output is sent directly to the Immediate
Window by use of the Debug.Print statement.

14.2.3 Variables
Identifiers – variables and constants
An identifier is simply a name that represents
a value. The name is used as an alternative to

referring to a value’s memory address in RAM
(names are friendlier and easier to remember).
Identifier names should not be the same as any
existing control’s property.

VB.NET® uses two kinds of identifier: variables
and constants.

Variables and constants are absolutely critical to
writing program code; without these there could
be no true processing (see section 14.3.1).

Data types and declaration
In order to create a variable or constant, it is nec-
essary to write a declaration. In VB.NET® a vari-
able is created through the use of the ‘Dim’ key-
word (standing for Dimension). In addition, the
programmer must select the correct data type for
the variable or constant.

Figure 14.46 Floating Immediate Window displays
debug information

Dim counter As Byte
counter = 1
Do While counter < 30
 Dim remainder As Byte
 remainder = counter Mod 4
 If remainder = 0 Then
 Debug.Print(counter & " is
exactly divisible by 4.")
 End If
 counter = counter + 1
Loop

Key terms
A variable is an identifier whose value can
change while the program runs. Variables can
only store one value at a time; if a second val-
ue is assigned, the older value is overwritten.

A constant is an identifier whose value can-
not change while the program is running.
Constants represent fixed values that may be
used in program code instead of using text
or numeric values, for example, ‘Pi’ instead
of 3.14 to improve both its readability and
maintainability.

Key terms
A data type is an essential building block
for programming; data types are used to
specify the kind of value that a programmer
needs to store, for example, numeric, text,
date, Boolean.

A declaration in VB.NET® is a statement
which, for a variable, states the variable’s
name and data type.

In addition, a constant declaration will
also assign the constant’s value.

Event driven programming

27

The following example demonstrates declarations
of variables and constants in VB.NET®:

In VB.NET®, constants are created by using the
‘Const’ keyword.

Table 14.01 lists popular VB.NET® data types.

When creating variables and constants it is usu-
ally considered good practice to select a data
type which can store expected values in the most
efficient manner. For example, selecting a ‘Long’
data type to store a user’s age in years would not
be appropriate; it’s wasteful of RAM.

Scope of variables
Scope refers to the visibility of a variable; wherea-
bouts in the program it can be seen (and there-
fore used).

For example, a variable declared inside an event
handler (e.g. ‘Click’) can only be used inside that
event handler; it doesn’t exist outside it. This is
called a local variable.

Dim bAge As Byte
Dim iMatchAttendance As Integer
Dim sUsername As String
Dim dItemPrice As Decimal

Const PI As Double = 3.141592
Const PASSWORD As String =
"LETMEIN"

Table 14.01

Data type RAM
requirement

Range of values

Boolean 4 bytes True or False

Byte 1 byte 0 to 255 (unsigned)

Char 2 bytes 0 to 65535 (unsigned)

Date 8 bytes January 1, 1 Common Era to December 31, 9999 CE

Decimal 12 bytes +/–79,228,162,514,264,337,593,543,950,335 with no decimal point.
+/–7.9228162514264337593543950335 with 28 places to the right of
the decimal.
The smallest non-zero number is
+/–0.0000000000000000000000000001

Double 8 bytes –1.79769313486231E308 to –4.94065645841247E-324
+4.94065645841247E-324 to +1.79769313486232E308

Integer 4 bytes –2,147,483,648 to 2,147,483,647

Long 8 bytes –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Object 4 bytes Any type can be stored in a variable of type Object; it’s often referred to
as a universal data type. Similar to a ‘variant’ in Visual Basic 6®.

Short 2 bytes –32,768 to 32,767

Single 4 bytes –3.402823E38 to –1.401298E-45;
+1.401298E-45 to +3.402823E38

String 10 bytes + (2 *
string length)

0 to 2 billion Unicode characters (approximately)

User-defined
type (structure)

Sum of the sizes
of its members

Each member of the structure has a range determined by its data type
and independent of the ranges of the other members.

BTEC Level 3 National in IT

28

A variable declared inside the Form Class can be
used in any of the event handlers; it has wider scope.

In addition the keywords ‘public’ and ‘private’ are
used to mark variables (and event handlers) as ac-
cessible from only within (private) their class or
from outside (public). These are called access
modifiers. Unless made public, variables are pri-
vate by default.

In VB.NET® variables can belong to one of four
basic scopes:

1. Block – new in VB.NET®, these are variables
declared within a construct, for example, a loop
or selection, and cannot be used outside it. For
example:

In this example the variable called ‘remainder’
can only be used within the ‘Do…’ loop block.

2. Procedure – variables declared within an event
handler are available throughout that event
handler. For example:

3. Module – variables declared within a separate
module are limited to use within that module.

The term can also apply when a variable is de-
clared within a class (e.g. a Form class), effective-
ly limiting the use of the variable to that class,
but any event handler inside it. For example:

4. Namespace – this is a more modern program-
ming idea where defined namespaces are used
to collect together identifiers (variables and
constants). When a namespace is used, its set of
variables and constants is active.

Where possible, scope should be kept as local as
possible – it reduces memory consumption and
reduces the opportunity for variables to be used
incorrectly; this also helps debugging by limit-
ing the opportunities where variables can be given
‘bad’ values.

Dim counter As Byte
counter = 1
Do While counter < 30
 Dim remainder As Byte
 remainder = counter Mod 4
 If remainder = 0 Then
 Debug.Print(counter & " is

exactly divisible by 4.")
 End If
 counter = counter + 1
Loop

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

 Dim counter As Byte
 counter = 1
 Do While counter < 30
 Dim remainder As Byte
 remainder = counter Mod 4
 If remainder = 0 Then
 Debug.Print(counter & " is exactly divisible by 4.")
 End If
 counter = counter + 1
 Loop
End Sub

Public Class Form1
 Dim Username As String
End Class

Event driven programming

29

14.3 Be able to design event
driven applications
This section will cover the following grading
criterion:

P3

14.3.1 Specification
The specification of an event driven application
relies on the developer assembling the following:

Purpose What is the program for?
 What is it supposed to achieve?

User needs What are the user’s needs?
 What do they want the program to

achieve?
 How do they want it to work?
 Who is going to use it?
 How accurate does it need to be?
 How reliable and robust does it need

to be?

Inputs What are the inputs?
 What type and quantity are they?
 How frequently are they required?

Processes What processes are required to calcu-
late the outputs required by the user?

 How do we get from the input to the
output?

Outputs What outputs are required?
 How are they to be presented?
 How should the information be

formatted?
 How often is the output to be

generated?

Backing storage

 What kind of data needs to be stored?
 How is the data to be organised?
 How long does the data need to be

kept?
 How will this data be accessed?

14.3.2 Design
Due to its event driven approach, VB.NET® does
not really lend itself to traditional design tech-
niques such as pseudocode, flowcharts and struc-
ture diagrams.

Other techniques such as form design, storyboards
and action/event charts are preferable.

Form design
Good form design is critical to the success of a
graphical user interface-based event driven pro-
gram. As such there are a number of simple rules
we can apply to ensure the best user interaction
experience possible.

Forms should:

MM be sensibly laid out – with related information
grouped together

MM not have any spelling or grammatical errors
(users will lose faith in the software)

MM use a logical tab order (Tab key) to move be-
tween form elements

MM use consistent formatting (colours, font etc.)
MM use helpful labelling
MM have error detection built in
MM ideally support users with disabilities, e.g.

have font size changes and audible prompts to
improve accessibility

MM have online help available.

Forms may be drawn manually (i.e. by hand) or de-
veloped using a graphical package on a computer
system.

Make the Grade
For this criterion you have to design your event
driven program. This is likely to be in response to
a problem set by your tutor unless you have been
given a ‘free’ project to work on.
 Any design method is acceptable as long as it
clearly demonstrates the appearance of the
application (e.g. the form’s design), how the various
processes are triggered (e.g. a storyboard or action/
event table) and what the actual inputs, processes
and outputs are.
 A data dictionary can also be used to detail all
the variables and so on that need to be declared.
 The sign of a good design is that it should be
relatively easy for another developer to implement a
working program from it.

P3

Unit link
Unit 11 – Systems Analysis and Design
deals with this topic in far greater detail
than is possible here.

BTEC Level 3 National in IT

30

The management at Frankoni T-Shirts have
asked you to design a new application that
they can install on PCs in their retail outlets
that will allow users to select the design and
features of their personalised T-shirt.

The program will then produce a rough image
showing the final product and generate its
cost based on size, quantity and so on.

Case Study

Figure 14.47 shows a hand-drawn form design for
the case study described above.

As you can see, the designer has taken the initial
needs as identified by the user (Frankoni T-Shirts)
and has sketched a suggested user interface. No
functionality has been specified yet. The sketch
should be presented to the user for feedback and
(if necessary) revision.

The final form design will be implemented using a
suitable EDP language such as VB.NET® (see sec-
tion 14.4.1).

Storyboard
Storyboards can be created as a way of seeing an
event driven solution in an outline fashion.

There is no need to specify functionality (how
the event handlers work); all that is necessary is
to identify what needs to be done and how multi-
ple forms and components link together and are
triggered.

Creating a simple storyboard for this is the logical
solution.

Scorecard – Storyboard
+ Easy to show to others and discuss

as it’s a visual tool.
+ Can get quick feedback.
+ Not linked to any programming

language.
+ Can be redrawn quickly; more

efficient than building prototypes.
– Cannot be tested interactively.
– Can become outdated quickly as

designs can change rapidly.

Figure 14.48 shows a typical storyboard for a pass-
word-controlled stock control system.

In this figure, the designer has drawn a few forms
and given basic linkage through the use of arrows.
Additional notes are included to help explain the
linkage of the forms.

Event procedures and descriptions
This is a useful reference table that lists each form,
trigger and event handler for an application. In
addition, it also describes the processes performed
by each event handler.

Table 14.02 is a suggested Action/Event table for
the storyboard shown in Figure 14.48.

Figure 14.47 Frankoni T-Shirts form design sketch

Event driven programming

31

3 times
Correct

Password

Incorrect
Password

Application
Quit

MAIN MENU

Add stock item

Remove stock

Print stock levels

Logout

X

LOGIN

Username

Password

OK

ABC

X INVALID USER

OK

The password you
have entered 3

times is incorrect.

X

ADD STOCK X

Figure 14.48 Storyboard for a password-controlled stock control system

Table 14.02

Form
name

Trigger Event
handler

Event handler description

Login OK button clicked Okbutton_
Click()

Checks to see whether the password is correct for the
given user name. Also keeps a track of the number of
attempts the user has made.
An incorrect attempt adds one to the number of
attempts and clears the TextBoxes.
If three attempts are made unsuccessfully, the Invalid
User form is opened.
A correct attempt opens the Main Menu form.

Login Close window
button clicked

‘Windows
Close’ System
event handler

A System Event that closes the application.

Invalid User OK button clicked Okbutton_
Click()

Closes the application after the warning has been
displayed.

Invalid User Close window
button clicked

‘Windows
Close’ System
event handler

A System Event that closes the application.

Main Menu Add stock item
button clicked

Addstock_
Click()

Opens the Add Stock item form when clicked.

Main Menu Remove stock item
button clicked

Removestock_
Click()

Opens the Remove Stock form when clicked.

BTEC Level 3 National in IT

32

As you can see, between them the form design,
storyboard and action/event table start to build
the mechanics and appearance of the required EDP
solution. From here, these designs are implement-
ed using a suitable EDP language such as VB.NET®

14.4 Be able to implement
event driven applications
This section will cover the following grading
criterion:

P4

14.4.1 Creation of application
14.4.2 Programming language
syntax
14.4.3 Constructs
This section will integrate these learning outcomes
and walk you through the creation of a new EDP
application. We will use the Frankoni T-Shirt com-
pany case study and form design as introduced in
section 14.3.2 as our active problem.

Step 1
Create a new VB.NET® project. Use the develop-
ment environment to add these controls based on
the original form design’s elements and layout (see
Figure 14.49).

Make the Grade
This criterion is the key aspect of the unit, testing
your ability to use an event driven programming
language to build a working application from a
design.
 It is likely that your tutor will ask you to take the
design elements you built for P3 and implement
them using a language such as Visual Basic.Net®.
 Pay attention to the IDE, debug facilities, language
syntax and required programming standards to build
a solid, reliable and usable application that meets the
needs defined by your tutor.

P4

Caution!
Once again the following example has been
broken down into a number of steps due to its
complexity.
If you follow each step carefully, everything should
work. If you discover a problem, go back a step
(or two) to see if you’ve missed anything.

Form
name

Trigger Event
handler

Event handler description

Main Menu Print stock levels
button clicked

Printstocklevel_
Click()

Opens the Print stock levels form when clicked.

Main Menu Logout button
clicked

Logout_Click() Closes the current form and reopens the Login form.

Main Menu Close window
button clicked

‘Windows
Close’ System
event handler

A System Event that closes the application

Event driven programming

33

Step 2
All of these controls can be found in the various
sub-categories in VB.NET®’s ToolBox (see section
14.2.2).

Figure 14.50 represents an attempt at recreating
the form in VB.NET®.

Although functional and as close to the suggested
form design as possible, it looks a bit unbalanced;
particularly with the ‘Qty’ TextBox seemingly float-
ing alone in the middle of the form. In reality, this
would be an iterative process with the design be-
ing shown to the end users to make suggestions
until they are happy with the final product.

Some minor changes have been made; two Panel
controls have been added to the ‘Colour’ and
‘Image’ parts of the form. In addition, there are
now two PictureBoxes in the Image panel – one
inside the other. The inner one will show our im-
age, the outer one will display the correct colour
T-shirt (as selected from the Colour ListBox to
the left). The colours in the ListBox (stored in the
Items property) have also been put into ascending
alphabetical order, that is A to Z.

All of the text is formatted to Tahoma, 12pt regular.

Figure 14.49 Identifying the VB.NET® controls

Figure 14.50 VB.NET® recreation

BTEC Level 3 National in IT

34

Step 3
The next step is to code the functionality of the
form, identifying the triggers and necessary event
handlers that are needed.

Perhaps the best way to do this is to produce the
storyboard (Figure 14.51).

As you can see, there are a number of calculations
to perform.

Upon investigation we find that the current T-shirt
prices are:

Small £7.50
Medium £9.50
Large £10.50
X-Large £12.50
Snug (Ladies) £11.00

In addition, while gift wrapping is charged per tee
(£2.00), the £6.50 postage and package charge is
considered to be a flat rate (Frankoni absorbs the
postal charges on larger shipments as a goodwill
gesture and in the hope of future business).

The ‘File Selection’ dialogue will be a Control that
exists as part of the Microsoft Windows® API.

Step 4
The next step is to build a basic action/event table
like Table 14.03.

Activity 6

Recreating the Frankoni ‘Build A Tee!’
form

Now it’s your turn! Use VB.NET®’s
Form Designer to recreate the manual
form.

For now, it is recommended that you do
not change any of the default control
names (although in reality this would
be considered to be good practice).

Calculated as Tee
Price TextBox Plus
Gift Wrap TextBox,
multiplied by Qty.

Calculated based on
size selection.

Build A Tee! X

Billing Form X

Build A Tee!LOGO

Qt

Colour

Image

Includes £6.50
P and P

Image
Filename

Image

Tee Price

Gift Wrap

Total Price

Choose

Buy

Size
Small
Medium
Large
X-Large
Snug (ladies)

File Selection Dialogue,
filtering only Image files

Figure 14.51 Storyboard

Event driven programming

35

Table 14.03

Form
name

Trigger Event handler Event handler description

BuildATee ‘Buy’ button
clicked

BuyButton_Click() Opens the Billing Form.

BuildATee ‘Choose’
button clicked

ChooseButton_Click() Opens a File Open Dialogue. The selected image’s
filename is stored in the Filename TextBox.
The selected image itself is loaded into the inner
PictureBox.

BuildATee Colour is
selected from
listbox

ColourList_
SelectedIndexChanged()

The colour is used to select the correct image
for the T-shirt background that forms the outer
PictureBox.

BuildATee ‘Close
window’
button clicked

‘Windows Close’
system event handler

A system event that closes the application.

BuildATee ‘Gift Wrap’
checkbox is
checked or
unchecked

GiftWrap_
CheckedChanged()

If the GiftWrap option is selected, the associated
TextBox is set to £2.00.
If the option is unchecked, the TextBox is cleared.
TotalPrice TextBox is also updated to show TeePrice
+ GiftWrap values.

BuildATee ‘Small Size’ is
selected from
RadioButtons

SmallSize_
CheckedChanged()

Tee Price TextBox is given the value of:
£7.50 x Qty TextBox + £6.50

BuildATee ‘Medium Size’
is selected from
RadioButtons

MediumSize_
CheckedChanged()

Tee Price TextBox is given the value of:
£9.50 x Qty TextBox + £6.50

BuildATee ‘Large Size’ is
selected from
RadioButtons

LargeSize_
CheckedChanged()

Tee Price TextBox is given the value of:
£10.50 x Qty TextBox + £6.50

BuildATee ‘X-Large Size’
is selected from
RadioButtons

XLargeSize_
CheckedChanged()

Tee Price TextBox is given the value of:
£12.50 x Qty TextBox + £6.50

BuildATee ‘Snug Size’ is
selected from
RadioButtons

SnugSize_
CheckedChanged()

Tee Price TextBox is given the value of:
£11.00 x Qty TextBox + £6.50

BuildATee Value in Qty
TextBox is
changed

Qtychosen_
TextChanged()

Cascade to appropriate RadioButton event handler
to recalculate the total price.

BTEC Level 3 National in IT

36

Step 5
You’ll notice that the design work has necessitat-
ed us changing the object names into something
more meaningful. This is achieved by selecting the
form object and changing its (Name) property in
the Property Window, as shown in Figure 14.52.

As noted, changing the names of form objects is
good practice as it makes it easy for the developer
to remember what an object actually is when read-
ing through a section of code. It also helps to self-
document the program code.

Various techniques are used to name objects in a
professional development environment. For now,
we will keep things straightforward and use simple,
understandable names.

The recommended changes to this EDP applica-
tion are shown in Figure 14.53 and Table 14.03.

Note: It is, of course, possible that you may have
added objects to the form in a different order. If
this has happened, ignore the ‘old name’ column
and just focus on the key letter and the new name.

Figure 14.52 Changing the object names

Figure 14.53 Application with renamed objects

Event driven programming

37

Table 14.04

Key Control Old name New name Additional new properties

A Form Form1 BuyATee Text = Buy A Tee!

B PictureBox PictureBox1 Logo SizeMode = StretchImage (will help to autoscale
the image selected)

C Label Label1 Title

D GroupBox GroupBox1 SizeSelector

E Label Label2 Qty

F TextBox TextBox1 Qtychosen

G RadioButton RadioButton1
RadioButton2
RadioButton3
RadioButton4
RadioButton5

SmallSize
MediumSize
LargeSize
XLargeSize
SnugSize

Checked = True (SmallSize)

H Label Label4 Image

I Panel Panel2 ImagePanel

J PictureBox PictureBox2 TeeImage

K Label Label3 Colour

L ListBox ListBox1 ColourList Has to have entries in the Items property: Black,
Blue, Green,
Yellow, Red and White.

M TextBox TextBox2 Imagename

N PictureBox PictureBox3 Teedesign SizeMode = StretchImage (will help to autoscale
the image selected)

O Panel Panel1 ColourPanel

P Button Button1 ChooseButton

Q Label Label5 TeePrice

R TextBox TextBox3 TeePriceBox TextAlign = Right

S CheckBox CheckBox1 GiftWrap

T TextBox TextBox4 GiftWrapBox TextAlign = Right

U Label Label7 PandP

V Label Label6 TotalPrice

W TextBox TextBox5 TotalPriceBox TextAlign = Right

X Button Button2 BuyButton

BTEC Level 3 National in IT

38

Step 6
Declaring variables and constants for the applica-
tion is also necessary. These can be recorded in a
simplified form of data dictionary which describes
each identifier as shown in Table 14.05.

These variables are then added to the program
code under the Public Class line as below:

Table 14.05

Identifier
name

Var or
Const

Scope Value Date
type

Description

dpostpack Const Module 6.5 Decimal Current price of postage and packing

dindgiftwrap Const Module 2.0 Decimal Current price of gift wrapping each tee

dsmallprice Const Module 7.5 Decimal Current price for a small tee

dmediumprice Const Module 9.5 Decimal Current price for a medium tee

dlargeprice Const Module 10.5 Decimal Current price for a large tee

dxlargeprice Const Module 12.5 Decimal Current price for an extra large tee

dsnugprice Const Module 11.5 Decimal Current price for a snug (ladies) tee

dqty Var Module – Byte Quantity of tees wanted by user

dgiftprice Var Module – Decimal Cost of gift wrapping based on quantity of tees
wanted

dteeprice Var Module - Decimal Price of tees – includes P&P for quantity wanted

dtotalprice Var Module - Decimal Total price – includes gift wrapping (if required)

Public Class BuyATee

 Const dpostpack As Decimal = 6.5
 Const dindgiftwrap As Decimal = 2.0
 Const dsmallprice As Decimal = 7.5
 Const dmediumprice As Decimal = 9.5
 Const dlargeprice As Decimal = 10.5
 Const dxlargeprice As Decimal = 12.5
 Const dsnugprice As Decimal = 11.5

 Dim dqty As Byte = 0
 Dim dgiftprice As Decimal = 0.0
 Dim dteeprice As Decimal = 0.0
 Dim dtotalprice As Decimal = 0.0

Event driven programming

39

Step 7
Now starts the fun part; we have to code some of
the event handlers that match to the identified
triggers in the action/event table.

We’ll start by coding the Size radio buttons
(SmallSize, MediumSize, LargeSize, XLargeSize and
SnugSize).

Let’s code the SmallSize_CheckedChanged() event
handler by double clicking on this radio button.

Add the following code:

Similar code will then be added to each radio but-
ton’s event handler, making modifications to the
tee price being charged in the calculation for the
different sizes.

Step 8
The next step is to code the Qtychosen TextBox.

This is a little more complex as changing the quan-
tity will result in changes to the Tee Price and the
Total Price. In other words, we’ll have to recalcu-
late these costs as the quantity changes.

These calculations already exist in each Size radio
button’s CheckChanged() event handler (as seen
in Step 7). Because of this, it seems a little silly to
simply repeat the code. There must be another way!

One technique involves using the GroupBox
(SizeSelector) to determine which radio button

has been selected, but this is a little complex to be
described here.

Instead, we will manually check (with ‘If…then…
else’ statements) which Size radio button has been
selected and trigger its event handler accordingly.
This is effectively cascading an event (from the
TextChanged() event handler in the Qty TextBox
to the CheckChanged() event handler of the cur-
rently selected radio button).

Here is the code for the TextChanged() event han-
dler for the Qtychosen TextBox:

Step 9
This step involves adding the GiftWrap price of
£2 per tee to the bill if the associated checkbox is
selected. Of course, if the checkbox is unselected,
the GiftWrap costs must be set to £0.00.

dqty = Val(Qtychosen.Text)
dteeprice = dsmallprice * dqty +
dpostpack
TeePriceBox.Text = Str(dteeprice)
TeePriceBox.Text =
Format(TeePriceBox.Text,
"Currency")
dtotalprice = dteeprice + dgiftprice
TotalPriceBox.Text =
Str(dtotalprice)
TotalPriceBox.Text =
Format(TotalPriceBox.Text,
"Currency")

If SmallSize.Checked Then
 SmallSize_CheckedChanged
(sender, e)

End If

If MediumSize.Checked Then
 MediumSize_CheckedChanged
(sender, e)

End If

If LargeSize.Checked Then
 LargeSize_CheckedChanged
(sender, e)

End If

If XLargeSize.Checked Then
 XLargeSize_CheckedChanged
(sender, e)

End If

If SnugSize.Checked Then
 SnugSize_CheckedChanged
(sender, e)

End If

BTEC Level 3 National in IT

40

Here is the appropriate code:

This code is added to the GiftWrap_Checked
Changed() event handler.

Step 10
Next let’s try coding the change of T-shirt colour –
the ListBox we’ve called ColourList.

This is reasonably straightforward but relies on
good preparation. The easiest way to do this (with-
out accessing Microsoft Windows® graphics API)
is to use simple bitmaps to represent each plain
T-shirt. These will be created using a graphic pack-
age such as Microsoft Paint®, Adobe Photoshop®
or Corel Paintshop Pro®.

We’ll need to create six T-shirt bitmap images,
one for each option with uniform size, format and
filename (Figure 14.54).

Double-click the ColourList to access the code win-
dow and add the following VB.NET® code to the
ChooseButton_SelectedIndexChanged handler:

This code will load a T-shirt bitmap image into the
outer PictureBox object (TeeImage).

The bitmap loaded will be the value picked from
the ListBox (e.g. Red) plus the string ‘t.bmp’ giv-
ing the full filename of ‘Redt.bmp’. The Help box
shows an example of this code in action:

Blackt.bmp Bluet.bmp Greent.bmp

Yellowt.bmp Redt.bmp Whitet.bmp

Figure 14.54

TeeImage.Image = System.Drawing.
Image.FromFile("C:\MyFolder\" +
ColourList.SelectedItem + "t.bmp")

If GiftWrap.Checked Then
 dgiftprice = dindgiftwrap * dqty
 GiftWrapBox.Text = Str(dgiftprice)
 GiftWrapBox.Text = Format(GiftWrapBox.Text, "Currency")
Else
 dgiftprice = 0.0
 GiftWrapBox.Text = Format("0.0", "Currency")
End If
dtotalprice = dteeprice + dgiftprice
TotalPriceBox.Text = Str(dtotalprice)
TotalPriceBox.Text = Format(TotalPriceBox.Text, "Currency")

Event driven programming

41

Step 11
Let’s move our attention to ChooseButton’s
Click() event.

In order to code this we have to add another ob-
ject to the form. In this case, it is a special type
of dialogue called the OpenFileDialog. It is locat-
ed in the ‘Dialogs’ category in the ToolBox (see
Figure 14.57).

Data validation
Validating user input is a key aspect when creating any EDP application. Validation is the process of checking
to see whether something is valid.
In this application, the most obvious input value to validate would be the ‘Qty’ textbox (Qtychosen).
Validation would logically be added to the ‘Buy’ button’s click event; if the ‘Buy’ button is clicked and the
‘Qty’ textbox has a value of less than 1, a suitable error message dialogue should be displayed (Figure 14.55).

If Val(Qtychosen.Text) < 1 Then
 MsgBox("Quantity must be 1 or more.", vbExclamation + vbOK, "There’s
a problem with your order...")
Else
 MsgBox("Would display the customer information form")
End If

Figure 14.55

Help

Figure 14.56 Selecting a plain red T-shirt

BTEC Level 3 National in IT

42

Once selected, it is added to the bottom of your
form in a separate area.

Double-click the ChooseButton to access the code
window and add the following VB.NET® code to
the ChooseButton_Click handler:

This section of code (a) sets a filter for only .JPG
and .BMP files, (b) shows the OpenFileDialog, (c)
stores the selected filename in the text property
of our Imagename TextBox and (d) loads the im-
age selected into the Image property of the inner
PictureBox object (Teedesign).

Figure 14.58 is an example OpenFileDialog – I’m
sure you will have seen this before while using
Microsoft Windows®.

Putting this together now means we can select the
size, T-shirt colour and image (Figure 14.59).

OpenFileDialog1.Filter = "Image
Files(*.BMP;*.JPG)|*.BMP;*.JPG"
OpenFileDialog1.ShowDialog()
Imagename.Text = OpenFileDialog1.
FileName
Teedesign.Image = System.Drawing.
Image.FromFile(Imagename.Text)

Figure 14.58 Our OpenFileDialog browsing for image
files only

Figure 14.59 One white, small T-shirt with an orange
smiley and no giftwrap

Online help – ToolTips
You may notice that Imagename (the TextBox stor-
ing the chosen filename) is probably too short to
store the whole pathname of the selected image.
A common solution to this is to use a ToolTip.
ToolTips are helpful ‘tags’ that appear on a form
object when the mouse is left hovering over it,
for example:

Figure 14.60 An example ToolTip in Microsoft
Word®

Help

Figure 14.57 Adding an OpenFileDialog

Event driven programming

43

We can add a ToolTip to our EDP solution to im-
prove the online help (Figure 14.61). The ToolTip
control can be found in the Common Controls cat-
egory in the ToolBox.

The ToolTip Control will be added to the separate
area alongside the OpenFileDialog.

The next step is to add a line of code (ringed below)
into the existing ChooseButton_Click handler:

Run the application again, select an image file
and then hover over the Imagename TextBox
(Figure 14.62).

14.4.4 Programming standards
Organisations very often have programming
standards that they ask their developers to adhere
to. Typically this involves:

MM Comments – should describe the code’s pur-
pose in the solution, not the syntax of the
actual code itself.

MM Code layout – code is indented to highlight
the structure of the program, e.g. what code is
part of an ‘If…else’ statement.

MM Identifier naming – variables, constants etc.
are all given meaningful and sensible names.

Together these aspects form part of the internal
documentation of a program. In Visual Basic.NET®
all of these can be simply accomplished, e.g. Visual
Basic.NET® automatically indents program code
to encourage good code layout, comments can be
added to lines using a single apostrophe symbol
(usually appearing in green text).

Figure 14.61 Adding a ToolTip to the EDP application

OpenFileDialog1.Filter = "Image
Files(*.BMP;*.JPG)|*.BMP;*.JPG"
OpenFileDialog1.ShowDialog()
Imagename.Text = OpenFileDialog1.
FileName
Teedesign.Image = System.Drawing.
Image.FromFile(Imagename.Text)

ToolTip1.SetToolTip(Imagename,
Imagename.Text)

Figure 14.62 An example ToolTip, improving the
online help

BTEC Level 3 National in IT

44

The full Frankoni EDP solution (with
comments)

‘ Frankoni BuildaTee
‘
‘ Written by M Fishpool
‘ January 2007
‘ Version 1
‘
Public Class BuyATee
 Const dpostpack As Decimal = 6.5 ‘ price of packing and postage
 Const dindgiftwrap As Decimal = 2.0 ‘ price of individually gift wrapping 1 Tee
 Const dsmallprice As Decimal = 7.5 ‘ price of 1 small Tee
 Const dmediumprice As Decimal = 9.5 ‘ price of 1 medium Tee
 Const dlargeprice As Decimal = 10.5 ‘ price of 1 large Tee
 Const dxlargeprice As Decimal = 12.5 ‘ price of 1 extra large Tee
 Const dsnugprice As Decimal = 11.5 ‘ price of 1 snug Tee
 Dim dqty As Byte = 0 ‘ quantity required as a whole number
 Dim dgiftprice As Decimal = 0.0 ‘ gift wrapping price as a decimal number
 Dim dteeprice As Decimal = 0.0 ‘ tee shirt price as a decimal number
 Dim dtotalprice As Decimal = 0.0 ‘ total price of order as a decimal number

 Private Sub ChooseButton_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles ChooseButton.Click
 ‘ Code to select an image file and load it onto the form
 OpenFileDialog1.Filter = “Image Files(*.BMP;*.JPG)|*.BMP;*.JPG”
 OpenFileDialog1.ShowDialog()
 Imagename.Text = OpenFileDialog1.FileName
 Teedesign.Image = System.Drawing.Image.FromFile(Imagename.Text)
 ToolTip1.SetToolTip(Imagename, Imagename.Text)
 End Sub

 Private Sub ColourList_SelectedIndexChanged(ByVal sender As System.Object,ByVal
e As _
 System.EventArgs) Handles ColourList.SelectedIndexChanged
 ‘ Code to load the appropriate plain Tee image onto the form
 TeeImage.Image = System.Drawing.Image.FromFile("C:\"+ColourList.
SelectedItem+ _
 "t.bmp")
 End Sub
 Private Sub SmallSize_CheckedChanged(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles SmallSize.CheckedChanged
 ‘ Code to recalculate costs if a small Tee is selected
 dqty = Val(Qtychosen.Text)
 dteeprice = dsmallprice * dqty + dpostpack
 TeePriceBox.Text = Str(dteeprice)
 TeePriceBox.Text = Format(TeePriceBox.Text, "Currency")
 dtotalprice = dteeprice + dgiftprice
 TotalPriceBox.Text = Str(dtotalprice)
 TotalPriceBox.Text = Format(TotalPriceBox.Text, "Currency")
 End Sub

Event driven programming

45

 Private Sub MediumSize_CheckedChanged(ByVal sender As System.Object, ByVal e
As _

 System.EventArgs) Handles MediumSize.CheckedChanged
 ‘ Code to recalculate costs if a medium Tee is selected
 dqty = Val(Qtychosen.Text)
 dteeprice = dmediumprice * dqty + dpostpack
 TeePriceBox.Text = Str(dteeprice)
 TeePriceBox.Text = Format(TeePriceBox.Text, "Currency")
 dtotalprice = dteeprice + dgiftprice
 TotalPriceBox.Text = Str(dtotalprice)
 TotalPriceBox.Text = Format(TotalPriceBox.Text, "Currency")
 End Sub

 Private Sub LargeSize_CheckedChanged(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles LargeSize.CheckedChanged
 ‘ Code to recalculate costs if a large Tee is selected
 dqty = Val(Qtychosen.Text)
 dteeprice = dlargeprice * dqty + dpostpack
 TeePriceBox.Text = Str(dteeprice)
 TeePriceBox.Text = Format(TeePriceBox.Text, "Currency")
 dtotalprice = dteeprice + dgiftprice
 TotalPriceBox.Text = Str(dtotalprice)
 TotalPriceBox.Text = Format(TotalPriceBox.Text, "Currency")
 End Sub

 Private Sub XLargeSize_CheckedChanged(ByVal sender As System.Object,ByVal e _
 As System.EventArgs) Handles XLargeSize.CheckedChanged
 ‘ Code to recalculate costs if a large Tee is selected
 dqty = Val(Qtychosen.Text)
 dteeprice = dxlargeprice * dqty + dpostpack
 TeePriceBox.Text = Str(dteeprice)
 TeePriceBox.Text = Format(TeePriceBox.Text, "Currency")
 dtotalprice = dteeprice + dgiftprice
 TotalPriceBox.Text = Str(dtotalprice)
 TotalPriceBox.Text = Format(TotalPriceBox.Text, "Currency")
 End Sub

 Private Sub SnugSize_CheckedChanged(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles SnugSize.CheckedChanged
 ‘ Code to recalculate costs if a snug Tee is selected
 dqty = Val(Qtychosen.Text)
 dteeprice = dsnugprice * dqty + dpostpack
 TeePriceBox.Text = Str(dteeprice)
 TeePriceBox.Text = Format(TeePriceBox.Text, "Currency")
 dtotalprice = dteeprice + dgiftprice
 TotalPriceBox.Text = Str(dtotalprice)
 TotalPriceBox.Text = Format(TotalPriceBox.Text, "Currency")
 End Sub

BTEC Level 3 National in IT

46

 Private Sub Qtychosen_TextChanged(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles Qtychosen.TextChanged
 ‘ Code to recalculate costs by cascading the correct event handler when
 ‘ quantity changes
 If SmallSize.Checked Then
 SmallSize_CheckedChanged(sender, e)
 End If
 If MediumSize.Checked Then
 MediumSize_CheckedChanged(sender, e)
 End If
 If LargeSize.Checked Then
 LargeSize_CheckedChanged(sender, e)
 End If
 If XLargeSize.Checked Then
 XLargeSize_CheckedChanged(sender, e)
 End If
 If SnugSize.Checked Then
 SnugSize_CheckedChanged(sender, e)
 End If
 End Sub

 Private Sub BuyButton_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles BuyButton.Click
 MsgBox(“Would display the customer information form”)
 End Sub

 Private Sub GiftWrap_CheckedChanged(ByVal sender As System.Object,ByVal e As _
 System.EventArgs) Handles GiftWrap.CheckedChanged
 ‘ to recalculate costs based on whether or not the customer has asked for
 ‘ Tees to be gift wrapped
 If GiftWrap.Checked Then
 dgiftprice = dindgiftwrap * dqty
 GiftWrapBox.Text = Str(dgiftprice)
 GiftWrapBox.Text = Format(GiftWrapBox.Text, “Currency”)
 Else
 dgiftprice = 0.0
 GiftWrapBox.Text = Format("0.0", "Currency")
 End If
 dtotalprice = dteeprice + dgiftprice
 TotalPriceBox.Text = Str(dtotalprice)
 TotalPriceBox.Text = Format(TotalPriceBox.Text, "Currency")
 End Sub
End Class

Event driven programming

47

14.4.5 Testing
This section will cover the following grading
criteria:

P5 M3

Although testing and debugging can be seen as
two separate stages of the EDP development path,
they are linked to a degree.

Vigorous testing should discover the following
types of error in a typical EDP:

MM triggers not working or incorrectly identified
MM event handlers not working properly
MM calculations incorrect or with insufficient

accuracy
MM calculations not correctly formatted
MM some functionality missing or incorrectly

implemented.

Testing an EDP relies on the following:

1. Creating a test strategy (how you are going to
test the application).

2. Creating a test plan structure – specifically:
MM What is being tested?
MM When is it being tested?
MM What are the expected results?
MM What are the actual results?

3. Comparing the expected and actual results:
MM Did it work as expected?
MM If not, what corrective action needs to be

performed?
MM Which error messages occurred?

Putting it all together…
A Frankoni customer tries the program, selecting
five large white T-shirts with an orange smiley logo.
He would also like them gift wrapped.

Producing this calculation manually will give us
our expected result:

Tee price: 5 x £10.50 = £52.50

Add P&P (£6.50) = £ 6.50

Plus gift wrap (5 @ £2.00) = £10.00

Total price = £69.00

We can then input these values and choices into
our EDP solution to see if it functions correctly.
This is shown in Figure 14.63 on page 48.

Make the Grade
Getting your EDP application to run isn’t the end
of the job – you have to prove that it is working as
expected.
 P5 asks you to test the application.
 M3 asks you to analyse the results. This means
that you must compare and contrast the expected
and actual results to see whether there are any
discrepancies.
 Thorough testing will make the review exercise
required for D2 (see section 14.4.6) much easier!

M3P5

BTEC Level 3 National in IT

48

From this calculation, it would appear that the
program is functioning correctly. In addition, all
triggers and event handlers seem to be working
properly.

Finally, you may wish to check the tab order of
each form control to ensure that the form can be
easily (and logically) navigated, that is, top-to-bot-
tom, left-to-right.

As we’ve already seen in section 14.2.2, special-
ist debug tools available in VB.NET® (Breakpoint,
Step Into, Watch and the Immediate Window) are
invaluable in the quest to identify and correct er-
rors in the program code.

14.4.6 Review
This section will cover the following grading
criterion:

D2

Review is a critical process, which occurs after
testing and debugging.

Initially the major concern should be: how does the
EDP compare to the user’s original specifications?

If the correct level of fact-finding was conducted
as part of the design (see section 14.3.2), the pro-
gram should meet the user’s needs accurately.

At the risk of finding out at the end of the proc-
ess that considerable time and money has been
wasted in creating something that does not meet
the user’s needs, the use of interim reviews that are
regularly spaced along the development period are
a good idea. These will prevent a program getting
too far from its original design (something that is
called ‘feature drift’).

Reviews feed back into the design and implemen-
tation stages of an EDP, helping the programmer
to understand what is really wanted rather than
what they think is wanted.

Figure 14.63 Testing the full application

Unit link
Unit 6 – Software design and
development, section 6.2.1, stage 6 also
examines testing and debugging and while
it does so from a C#® perspective,
concepts such as white box testing,
black box testing and trace tables are
still relevant. It also provides an example
of a typical test table.
Refer to these for additional guidance.

Make the Grade
This criterion follows on from P5 and M3 (which
involved testing and analysis of test results).
 Reviewing your own work is always difficult as
you tend to be emotionally invested in it. This may
mean that your tutor may ask you to review one of
your peer’s applications instead.
 A review, produced as a report, video or a
presentation, should say:

MM how well it meets the defined requirements
MM how accurate the application is
MM how reliably the application works
MM how easy the program is to use
MM how aesthetically pleasing the application is
MM any aspects which need improvement.

D2

Event driven programming

49

Documentation
This section will cover the following grading
criterion:

M4

Documentation is another vital aspect and con-
sists of material written for two different types of
audience:

MM User documentation – written for the end-
user, documenting how the application is used.

MM Technical documentation – written for other
developers, documenting how the application
works.

EDP stages of development
1. Understand the user’s needs.
2. Design screen layouts, work out data storage

etc.
3. Implement forms and controls to reflect ap-

proved screen layouts.
4. Identify triggers needed.
5. Code associated event handlers (including

documentation).
6. Debug the program.
7. Test the program.
8. Review (may occur during stages if required).
9. Produce user and technical documentation.

HelpUnit link
Unit 6 – Software design and
development, Section 6.2.1, stage 8 also
examines the review process. Refer to
this for additional guidance.

Make the Grade
This criterion requires you to create technical
documentation for the EDP application’s future
support and maintenance.
 This is likely to be a written manual or a series
of web pages that document how the program was
created. A good test for technical documentation
is whether it has been written in enough detail
for another developer to alter it or add extra
functionality post-review.

M4

Unit link
Unit 6 – Software design and
development, section 6.6.1, stage 7 gives
more information on user and technical
documentation.
Refer to this for additional guidance.

Activity 7

More EDP problems

1 Kris Arts and Media Ltd requires
an EDP that will calculate a
quote for specific marketing and
advertising jobs.

Generally they use the formula below
when creating a sales brochure.

One-off costs for the one-off sample
brochure:

• Black and white printing £300 or

• Greyscale printing £500 or

• Full colour printing £900

• Costs are £3 per page (matt stock
paper) and/or

• Costs are £5 per page (gloss stock
paper)

• Costs are £25 per illustration/
graphic

• Costs are £35 per photograph
(black and white)

• Costs are £45 per photograph
(colour)

• Duplication of the brochure to PDF
format for electronic distribution:
£100

BTEC Level 3 National in IT

50

Costs per printed brochure:

• Duplication of each brochure is
£1.25

2 Kris Arts and Media Ltd would like
a simple ‘colour picker’ that allows
them to use three scrollbars (Red,
Green, Blue) to generate a true
colour shade. Each scrollbar should
permit movement between 0 and
255.

The program should display the RGB
colour code and generated colour.

Unit links
Unit 14 is a mandatory unit for the Edexcel BTEC Level 3 National Extended Diplo-
ma in IT (Software Development) pathway and optional for all other qualifications and
pathways of this Level 3 IT family.

Qualification (pathway) Mandatory Optional Specialist
optional

Edexcel BTEC Level 3 National Certificate in Information
Technology



Edexcel BTEC Level 3 National Subsidiary Diploma in
Information Technology



Edexcel BTEC Level 3 National Diploma in Information
Technology



Edexcel BTEC Level 3 National Extended Diploma in
Information Technology



Edexcel BTEC Level 3 National Diploma in IT (Business) 

Edexcel BTEC Level 3 National Extended Diploma in IT
(Business)



Edexcel BTEC Level 3 National Diploma in IT (Networking
and System Support)



Edexcel BTEC Level 3 National Extended Diploma in IT
(Networking and System Support)



Edexcel BTEC Level 3 National Diploma in IT (Software
Development)



Edexcel BTEC Level 3 National Extended Diploma in IT
(Software Development)



Event driven programming

51

Further reading
Balena, F. – Programming Microsoft Visual Basic 6 (Microsoft Press US, 1999) ISBN-10: 0735605580,
ISBN-13: 978-0735605589

Bond, M., Law, D., Longshaw, A., Haywood, D. and Roxburgh, P. – Sams Teach Yourself J2EE in 21 Days,
2nd Edition (Sams, 2004) ISBN-10: 0672325586, ISBN-13: 978-0672325588

Palmer, G. – Java Event Handling (Prentice Hall, 2001) ISBN-10: 0130418021, ISBN-13:
978-0130418029

Longshaw, J. and Sharp, J. – Visual J#.NET Core Reference (Microsoft Press US, 2002) ISBN-10:
0735615500, ISBN-13: 978-0735615502

Suddeth, J. – Programming with Visual Studio.NET 2005 (Lulu.com, 2006) ISBN-10: 1411664477,
ISBN-13: 978-1411664470

Troelsen, A. – Pro C# 2005 and the.NET 2.0 Platform, 3rd Edition (Apress US, 2004) ISBN-10:
1590594193, ISBN-13: 978-1590594193

Websites
eventdrivenpgm.sourceforge.net

www.vbwm.com

www.vbexplorer.com/VBExplorer/VBExplorer.asp

There are specific links to the following units in the scheme:
Unit 6 – Software design and development
Unit 15 – Object-oriented programming
Unit 16 – Procedural programming
Unit 22 – Developing computer games

In order to achieve each unit you will complete a series of coursework activities. Each time you hand
in work, your tutor will return this to you with a record of your achievement.

This particular unit has 12 criteria to meet: 6 Pass, 4 Merit and 2 Distinction.

For a Pass: You must achieve all 6 Pass criteria.

For a Merit: You must achieve all 6 Pass and all 4 Merit criteria.

For a Distinction: You must achieve all 6 Pass, all 4 Merit and 2 Distinction criteria.

Achieving Success

